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FINITE STRETCHING OF AN ANNULAR PLATEt

V. BIRICIKOGLUt and ARTURS KALNINS§

Lehigh University, Bethlehem, Pennsylvania

Abstract-The problem of the finite stretching ofan annular plate which is bonded to a rigid inclusion at its inner
edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive
law. It is shown that the inclusion ofthe effect of the transverse normal strain leads to a rapid variation in thickness
which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the
behavior of the plate near the edges, are presented.

NOTATION

~,II

z
plane polar coordinates on the undeformed middle plane of the plate
coordinate along the normal of the middle plane
coefficients of the first fundamental form of the deformed plate cx~ de +cxt 2 dll2

principal extension ratios [defined by (I)] in ~, II and z directions
radial displacement
thickness of the undeformed plate
thickness of the deformed plate
hydrostatic pressure
membrane stress resultants

average normal stress

transverse shear stress couple

coefficients of the Mooney strain energy form
fJ/cx

INTRODUCTION

THE problem of the strain distribution around a central circular hole in a circular sheet,
made of isotropic, incompressible material, and subjected to a uniform radial tension
at its outer edge, was first investigated by Rivlin and Thomas [1]. In this paper, the problem
is formulated using the principal values of the Cauchy-Green deformation tensor, which are
called the principal extensions, and solved numerically for a Mooney material. The same
problem also is included in chapter 4 of Green and Adkins [2J, who extended the formula­
tion to transversely isotropic materials. Recently, the related problem of the stress con­
centration for a circular sheet has been studied by Yang [3J, who also presented the results
for the case ofa circular rigid inclusion. In all of these papers, the plane stress assumption is
used, which excludes the effect of the transverse normal strain. However, after the problem
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is solved, a thickness change is calculated, so that the incompressibility condition through.
out the plate is satisfied.

The inclusion of the effect of symmetric transverse normal strain, in the context of thin
shell theory, has been recently considered by Biricikoglu and Kalnins [4]. The set of equa­
tions presented in [4J are directly applicable to the axially symmetric stretching of a circular
plate. These equations admit the prescription of a definite symmetric thickness change
on the boundaries and are capable of predicting the thickness change throughout the plate.
In the case of the stretching problem ofa plate, the bending moments and curvatu res vanish
identically, so that the deformation is truly symmetrical about the middle plane of the plate.

The purpose of this paper is to study the axisymmetric stretching of an annular plate,
made of an isotropic and incompressible Mooney-type material which is bonded to a rigid
inclusion at its inner edge, so that the thickness of the deformed plate at the inner edge is
constrained to be equal to the undeformed thickness of the plate.

The contribution of the present paper is that it includes the effect of the symmetric
transverse normal strain and hence it allows the prescription of a definite symmetric
thickness change at the edges of the plate.

GOVERNING EQUATIONS

The following set of equations which govern the axisymmetric stretching of a circular
plate made of an isotropic, incompressible Mooney material are taken from [4, equations
(44), (63), (67) and (68)]. For axisymmetric deformation of a circular plate, the radial and
circumferential directions coincide with the principal directions of the Cauchy-Green
deformation tensor on the middle plane. The governing equations will be written in terms
ofthe principal values of the Cauchy-Green deformation tensor whose physical components
are called the principal extension ratios and are given by

(la)

(lb)

The incompressibility condition is

The equations of equilibrium are

(rx':N{).~-a{NIJ = 0

(a:S{).~-a~a:N = 0

N, = Aho[-Po+2O:AZ-2f:J(IIAt+h~A~A~,/12)J

NIJ = Aho[-PO+2c(A~-2f:JIA~J

N = Aho[-Po+2c(A2+h~A~~/12)-2f:JIA?]

S, = (h~/12)A~A2A,,[2a+2f:JAn

The compatibility condition is

ClI" = a"

(2)

(3a)

(3b)

(4a)

(4b)

(4c)

(4d)

(5)
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The definition of the radial displacement u gives

cx: = ~+u*.

The nonzero component of the rotation vector is

(6)

/33 = l-l/X

Along a circular edge ~ = const., the natural boundary conditions are that

either N ~ or u*,

either S~ or /33

(7)

(8a)

(8b)

be prescribed.

SCALED EQUATIONS

The governing equations (l H7) predict the axisymmetric stretching of a circular plate
with large elastic strains and a symmetric thickness change with respect to the middle plant'
of the plate. These equations constitute a system of ordinary nonlinear differential equa­
tions whose analytical solutions are not easily accessible in terms of simple functions. A
close look, however, reveals that (lH7) contain terms which are small over most of the
plate. This suggests for their solution the introduction of the coordinate stretching tech­
nique, which is widely used in boundary layer analyses. With the aid of the coordinate
stretching, (lH7) can be divided into two distinct groups: the outer problem which predicts
the behavior of the plate away from the edges, and the inner problem (boundary layer)
which governs the solution near the edges of the plate. The solution to the outer problem,
together with the solution in the boundary layer, provides a uniformly valid first approxima­
tion to the solution of the system of equations (lH7).

In the following, we first introduce the nondimensional independent variable x by

x = ~/L (9)

(lla)

(11 b)

(12a)

(l2b)

(l2c)

(l3)

(lOa)

(lOb)

(lOc)

(lOd)

n= N/2cxh ono = N0/2cxho

Sx = (12)tS~2cxh~

p = Po/2cx

where L is a characteristic length of the deformation pattern. Next, we nondimensionalize
the dependent variables by

nx = N ~/2cxho

u = u*/L CXo = cx:lL

The governing equations (lH7) then become

cxonx,x +A,x(nx- no) = 0

e(cxosx),x - CXoA,xn = 0

A,o = cxo/x
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and

where
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nx = ).[ - p + ),~ - niq2 +,<;2 ),,~)]

no = ),,[ - P+),,; - n~).2J

n ),,[ _p+),,2_n 2),,2+£2A2]
x 0 ,x

Sx = £Ax),,2 A) 1+r),,;)

(l4a)

(14b)

(14c)

(14d)

(15)

is a nondimensional parameter.
We now suppose that the parameter £ is small compared with unity so that the terms of

order,<; and smaller can be neglected in (llHI4). This process yields the following set of
equations which govern the deformation of the plate away from the edges.

n 0

nx = ),,(-p+),~-niA2)

no = ),,(-p+),; n;),,2)
n=),,(_p+),,2 n;),,;)

(16a)

(16b)

(l7a)

(17b)

(17c)

(17d)

The remaining equations (12) and (13) are unchanged. Equation (16b), together with (17c),
serves for the determination of the unknown hydrostatic pressure p in terms ofthe extension
ratios.

Since the order of the governing differential equations is reduced by two, the solution
to the outer problem is not uniformly valid throughout the entire plate. This necessitates
the formation of the boundary layers near the edges of the plate. The proper boundary
conditions to the outer problem should be obtained from the matching requirements, so
that they will be given after the analysis of the boundary layers is completed.

To study the boundary layer, let x = X o be the equation of the edge of the plate. The
stretched boundary layer coordinate is defined by

T = (x xo)/e.

In terms of the stretched coordinate r, the governing equations (11 H14) become

(Xonx,,+eAx(nx no) = 0

(xosx., +£AxSx (xoAxn = 0

),,0 = (xo/(xo+er)

u = (Xo-(xo+er)

(18)

(l9a)

(19b)

(20a)

(20b)

(20c)

(21)
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nx = A[ -p+A;-n~(A2+)'~r)J (22a)

ne = A[-p+A~-n;A2J (22b)

n = A[-P+A2+A~r-n;An (22c)

Sx = AxA
2A,r[l +n~J. (22d)

The boundary layer equations, then, are obtained from (19) to (22) by letting [; -+ 0 while
keeping r fixed, which leads to

(t,e = bxo = const.

Ae = 15 = const.

u = (b-l)xo = const.

nx = no = const.

Sx,r-Axn = 0

no = A[-P+A;-rb2(A2+A~r)J

ne = A( - p+b2- r/b2)

n = ),(-P+A2+A~r-rb2AD

Sx = AA,i1 +r b2 )lb

AxA = lib.

(23a)

(23b)

(23c)

(24a)

(24b)

(25a)

(25b)

(25c)

(25d)

(26)

Now, (25a) serves for the elimination of the unknown hydrostatic pressure p. The solution
to the boundary layer equations (23H26) must satisfy the prescribed conditions at the edge
of the plate as r -+ 0, and must match the outer solution as r -+ 00. Since nx and u are con·
stant throughout the boundary layer, and since the boundary layer solution must match
the outer solution as r -+ 00, it follows that the natural boundary condition for the outer
problem is that

be prescribed.

at x = X o either nx or u (27)

OUTER PROBLEM

The outer problem is governed by (12), (13), (16) and (17), with the boundary condition
(27). Although this problem has been already solved in [1, 3J, we consider its solution
again, because we need it for the matching with the inner solution and also because we can
propose a more systematic method for its solution than that used in [1].

The solutions presented by Rivlin and Thomas [lJ, and later by Yang [3J, are obtained
through a direct integration process which requires the boundary values of Ax, and Ae (or
equivalently of nx and u) at the starting point. In this sense, they presented solutions to the
corresponding initial value problem rather than the boundary value problem. For the
solution of the outer problem, we use the multisegment method of direct numerical inte­
gration [5]. According to this method, the boundary value problem is formulated in terms
of two variables, called as the fundamental variables, which enter into the boundary
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conditions of the problem. The multisegment method requires the evaluation of the deriva­
tives of the fundamental variables with respect to the radial coordinate x at any point on
the middle plane, when the fundamental variables themselves are known. The calculation
of the derivatives is carried out after arranging the system of governing equations (12), (13),
(16) and (17) in a certain sequence, namely

rxe = x+u (28a)

(28b)

(28c)

(28d)

(28e)

(281')

(28g)

(30)

where (28c) should be solved for Ax. In the above equations the hydrostatic pressure is
eliminated through the use of (16b) and (17c).

The outer boundary value problem is described by (28) with the boundary condition
(27).

INNER PROBLEM

The behavior of the plate near the edges is governed by the boundary layer equations
(23H26). Since nx and ,1(1 are constant in the boundary layer, we can eliminate hydrostatic
pressure p using the constitutive relation for nx , namely, (25a). This yields

n = no+A(1 +fo2)(A2+A~-)"';). (29)

Next, we eliminate the radial extension ratio Ax from (24b) and (29) using the incompres­
sibility condition (26). We then substitute nand Sx into the equilibrium equation (24b) and
get a second order nonlinear differential equation for the extension ratio A

, no 1
)·.rr = A +(i-+ f 152 )),2 - 151 ,13 .

Since the independent variable is absent on the right hand side, (30) can be integrated to give

2 '2 2no 1
A,t = It -(T+fo2)i+ 02).2+ 2C

where C is an integration constant. In order to match the outer solution as r ...... 00, Amust
be a monotonically decreasing function of r in the boundary layer. Hence the derivative of
Amust be negative and

(31)
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(32)

Substituting (31) into (25d) we get the shear moment Sx as a function of A

(1+rb
2
)[ 4 2 2no 1 J1

SX = - b A +20, -(1 +rb2)A+ 152 .

The constant C is determined through matching with the outer solution. The matching
conditions are given by

inner A(T ~ (0) outer A(X ~ xo) = (J

inner Sx(T ~ (0) = outer sx(x ~ x o) = 0

where (J is known from the outer solution. Combining (33a) and (33b) we find that

inner sxP. ~ (J) = 0

(33a)

(33b)

(34)

which is the appropriate matching condition since we have an explicit relation between
Sx and A. Using (34), we get from (32) that

(35a)

so that (32) reduces to

(35b)

(36)

where we have used

no = (J(b2~2-(J2)(1+rb2)

which is obtained from (17a) by eliminating p with the aid of (l6b) and (17c).
Let the value of Aat the edge X o be denoted by (J*. Using separation of variables and

(35a), (31) leads to

which can easily be integrated to give

T = T(A, (J, (J*)

(37a)

(37b)

in terms of simple functions. This form, however, is not useful because the inversion of
(37b) into the form

), = A(T, (J, (J*)

is rather difficult. Hence, we prefer to calculate the initial value of Sx by

s: = SAT = 0)

(38)



1648 V. BIRICIKOGLU and ARTURS KALNINS

and then integrate the boundary layer equations (24b) and (25b) numerically, since now the
problem is actually reduced to an initial value problem.

One interesting remark can be made by observing the form of(35b). IfSx = 0 is prescribed
at the edge of the plate, (35b) gives that

a* = a

which means that the initial value of A. is equal to its outer counterpart. Hence, it follows
that for the case

sx(-r = 0) = 0

there is no boundary layer ofthickness 0(8). This case then can be represented by the outer
solution alone, which is the case treated by Rivlin and Thomas [1].

Ifa circular annular sheet is bonded to a rigid inclusion at its inner edge and is subjected
to a uniform radial stretching, the boundary conditions at the inner edge are

Then (23c) yields

at x = xo

atr = 0

u = 0 (outer)

)" = a* = 1 (inner).

b = 1

(39a)

(39b)

and hence the initial condition of Sx becomes

sAr = 0) = -0+1)(I-a)(1+2a+:2f
which then can be used to initiate the initial value integration.

NUMERICAL RESULTS

The solutions of two distinct problems are presented. First, the solution state of an
annular circular plate which is subjected to a uniform tension at the outer edge is given
(Fig. 1). This problem is solved by the multisegment method of direct numerical integration
[5]. The linear solution is taken as the first trial solution, and acceptable convergence is
achieved after three iterations. A good indication ofconvergence is provided by the value of
nx at the outer edge which is supposed to converge to the prescribed value (Table 1). In this
problem, since Sx = 0 prescribed at the edges, there are no boundary layers of order 8

so that the outer solution is assumed to represent the solution state throughout the entire

i
I
I
I

Xo=I'O 2·0

FIG. 1. Section of the annular plate.
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TABLE L VALUES OF nx AT x = 3
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Linear
Nonlinear First iteration

Second iteration
Third iteration
Fourth iteration
Fifth iteration

0·35000
0·27424
0·33978
0·34931
0·34996
0·34999

TABLE 2. RADIAL DISPLACEMENT AND RADIAL STRESS

RESULTANT FOR FIVE ITERATIONS

(MOONEY MATERIAL r = 0·1)

x u nx

1·00 0·3303 0·0000
1·20 0·3094 0·1018
1·40 0·2974 0·1713
1·60 0·2915 0·2204
1·80 0·2900 0·2561
2·00 0·2917 0·2828
2·20 0·2958 0·3031
2·40 0·3017 0·3190
2·60 0·3091 0·3316
2·80 0·3176 0·3417
3·00 0·3271 0·3500

TABLE 3. BONDED PLATE OUTER SOLUTION: RADIAL DISPLACEMENT AND

STRESS RESULTANTS (MOONEY MATERIAL r 0·1)

x u nx no

1·00 0·0000 1·3160 004523
1·20 0·0892 1·1363 0·5677
1·40 0·1650 1·0425 0·6362
1·60 0·2330 0·9866 0·6805
1·80 0·2961 0·9502 0·7109
2·00 0·3557 0·9251 0·7327
2-20 004129 0·9070 0·7488
2-40 004683 0·8934 0·7610
2·60 0·5224 0·8831 0·7706
2-80 0·5754 0·8749 0·7782
3·00 0·6275 0·8684 0·7843

TABLE 4. BONDED PLATE OUTER SOLUTION: EXTENSION RATIOS

(MOONEY MATERIAL r = 0·1)

x Ax ..to ,l,

1·00 104954 1·0000 0·6687
1·20 104061 1·0743 0·6620
lAO 1·3565 1·1179 0·6594
1·60 1·3260 1·1457 0·6583
1·80 1·3057 1·1645 0·6577
2·00 1·2915 ]·]779 0·6574
2-20 1·2811 1·]877 0·6572
2·40 ]·2734 1·]95] 0·6571
2·60 ]·2674 1·2009 0·6570
2·80 1·2627 1·2055 0·6570
lOO 1·2589 1·2092 0·6569
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FIG. 2. Section of the bonded circular plate.

plate. The material is assumed to be of Mooney type with r = 0-1. The radial displacement
u and the radial stress resultant nx are given in Table 2. It is interesting to note that the
radial displacement is approximately constant throughout the plate.

Next, the solution state ofan annular circular plate which is bonded to a rigid inclusion
at its inner edge and subjected to uniform radial tension at its outer edge is given (Fig. 2).
The solution state is assumed to consist of an inner solution at the inner edge, and an outer
solution. In Tables 3 and 4 the variation of the radial displacement, the radial and circum­
ferential stress resultants and the extension ratios of the outer problem are given. The varia­
tion of the boundary-layer quantities with respect to the stretched coordinate r is given in
Tables 5 and 6. The extension ratio Awhich represents the variation of the deformed thick­
ness is plotted in Fig. 3.

CONCLUDING REMARKS

A close look at the second problem reveals that away from the bonded edge the thickness
of the deformed plate is again almost constant. Near the bonded edge, where the inner
solution is valid, the circumferential stress resultant nil shows a sharp rise (Tables 3 and 5)
its value at the bonded edge (r = 0) being almost three times larger than the one predicted

Outer sol. 0·6678

0'6

.,.
FIG. 3. Variation of the extension ratio A.
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TABLE 5. BONDED PLATE INNER SOLUTION: STRESS RESULTANTS AND COUPLES
(8 = 0·04166. r = 0·1)

1651

T

0·00
0·25
0·50
0·75
1·00
1·25
1·50

.:fj

x

1·0000
1·0104
1·0208
1·0312
1·0417
1·0521
1·0625

sx

0·7793
0-4208
0·2202
0·1124
0·0565
0·0281
0·0139
0·0000

n

1·8682
0·9134
0-4489
()'2211
0·1090
0·0538
0·0265
0·0000

1·3662
1·0010
0·7627
0·6189
0·5385
0·4959
0·4741
0·4523

by the outer solution. The thickness of the stretched plate, characterized by the extension
ratio A., shows an exponential decay to its asymptotic value found from the outer solution.

It can be concluded that the effect of the symmetric transverse normal strain is localized
near the edges of the plate, but can affect significantly the stress concentration around the
bonded edges.

TABLE 6. BONDED PLATE INNER SOLUTION:
EXTENSION RATIOS

T

0·00
0·25
0·50
0·75
1·00
1·25
1·50

X!

1·0000
1·1666
1·2978
1·3857
1·4376
1·4659
1·4806
1·4954
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AOcTpaKT-HccJle.a.yeTcli 3a.a.a'la KOHe'lHOrO paCTlllKeHl1l1 KOnl,qeBoH nJlaCTI1HKlI, CBJl3aHHOH C)I(eCTKlIM
BKJIIO'leHHeM Ha ee BHyTpeHHeM KpalO. PaccMaTpHBaeTcli MaTepHaJl H30TponHblH H Hec)l(HMaeMblH,
C KOHCTIHYTI1BHOM 3aKOHOMMqHa MYH3l1. YKa3aHo, 'ITO BKJlIO'leHlIe 3lPlPeKTa nonepe'lHOH HOpMaJIbHOH
.a.elPopMaqHI1 Be.a.eT J( 6bICTPOMY 113MeHeHl11O TOJlUmHbl, OrpaHI1'leHHOH Y3KOH KpaebOH 30HOH. ,ll.alOTcli
peilleHl1l1, B lIBHOM BH.a.e .a.JllI ypaBHeHHH lTorpamt'lHOrO CJlOll, ITp~I\CTaBJIlIIOIUHX ITOBe.a.eHl1e IIJIaCTHHKH
B6mi'3I1 KpaeB.


