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FINITE STRETCHING OF AN ANNULAR PLATEY

V. BIRICIKOGLU] and ARTURS KALNINS§

Lehigh University, Bethlehem, Pennsylvania

Abstract—The problem of the finite stretching of an annular plate which is bonded to a rigid inclusion at its inner
edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive
law. It is shown that the inclusion of the effect of the transverse normal strain leads to a rapid variation in thickness
which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the
behavior of the plate near the edges, are presented.

NOTATION

£ 0 plane polar coordinates on the undeformed middle plane of the plate
z coordinate along the normal of the middle plane
g, o coefficients of the first fundamental form of the deformed plate af d&* +o}* d6?
Aeshgi A principal extension ratios [{defined by (1})] in &, 8 and z directions
u* radial displacement
hy thickness of the undeformed plate
h = ik, thickness of the deformed plate
P = Pold) hydrostatic pressure
N Ny membrane stress resultants

B2
N = J‘ g, dz average normal stress

e
S, = j z0,. dz transverse shear stress couple

~hi/2
o, fb coefficients of the Mooney strain energy form
r Bla

INTRODUCTION

THE problem of the strain distribution around a central circular hole in a circular sheet,
made of isotropic, incompressible material, and subjected to a uniform radial tension
atits outer edge, was first investigated by Rivlin and Thomas [1]. In this paper, the problem
is formulated using the principal values of the Cauchy—~Green deformation tensor, which are
called the principal extensions, and solved numerically for a Mooney material. The same
problem also is included in chapter 4 of Green and Adkins [2], who extended the formula-
tion to transversely isotropic materials. Recently, the related problem of the stress con-
centration for a circular sheet has been studied by Yang [3], who also presented the results
for the case of a circular rigid inclusion. In all of these papers, the plane stress assumption is
used, which excludes the effect of the transverse normal strain. However, after the problem
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is solved, a thickness change is calculated, so that the incompressibility condition through-
out the plate is satisfied.

The inclusion of the effect of symmetric transverse normal strain, in the context of thin
shell theory, has been recently considered by Biricikoglu and Kalnins [4]. The set of equa-
tions presented in [4] are directly applicable to the axially symmetric stretching of a circular
plate. These equations admit the prescription of a definite symmetric thickness change
on the boundaries and are capable of predicting the thickness change throughout the plate.
In the case of the stretching problem of a plate, the bending moments and curvatures vanish
identically, so that the deformation is truly symmetrical about the middle plane of the plate.

The purpose of this paper is to study the axisymmetric stretching of an annular plate,
made of an isotropic and incompressible Mooney-type material which is bonded to a rigid
inclusion at its inner edge, so that the thickness of the deformed plate at the inner edge is
constrained to be equal to the undeformed thickness of the plate.

The contribution of the present paper is that it includes the effect of the symmetric
transverse normal strain and hence it allows the prescription of a definite symmetric
thickness change at the edges of the plate.

GOVERNING EQUATIONS

The following set of equations which govern the axisymmetric stretching of a circular
plate made of an isotropic, incompressible Mooney material are taken from [4, equations
{44), (63), (67) and (68)]. For axisymmetric deformation of a circular plate, the radial and
circumferential directions coincide with the principal directions of the Cauchy-Green
deformation tensor on the middle plane. The governing equations will be written in terms
ofthe principal values of the Cauchy-Green deformation tensor whose physical components
are called the principal extension ratios and are given by

A=, {la)
rg = aF/E. {1b)

The incompressibility condition is
heigh =1 (2)

The equations of equilibrium are

(FNg:—aNg =0 (3a)
(0FSs) ;— o 0fN =0 (3b)
N, = Aho[~ po+20a? —2B(1/A% + h3l54%/12)) (4a)
Ny = Ahg[~po+ 202 ~2/45] (4b)
N = Aho[ ~ po+20(A2 +h}A%/12)~2P/3%] (4c)
S, = (B3/12)A:4%A [20+ 2845 {4d)

The compatibility condition is

G‘lg’é = aé. (5)
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The definition of the radial displacement u gives
ay = E+u* (6)
The nonzero component of the rotation vector is
By =1-1/A ()
Along a circular edge ¢ = const., the natural boundary conditions are that
either N, or u*, (8a)
either S, or fi; (8b)
be prescribed.

SCALED EQUATIONS

The governing equations (1){7) predict the axisymmetric stretching of a circular plate
with large elastic strains and a symmetric thickness change with respect to the middle plane
of the plate. These equations constitute a system of ordinary nonlinear differential equa-
tions whose analytical solutions are not easily accessible in terms of simple functions. A
close look, however, reveals that (1)7) contain terms which are small over most of the
plate. This suggests for their solution the introduction of the coordinate stretching tech-
nique, which is widely used in boundary layer analyses. With the aid of the coordinate
stretching, (1}+7) can be divided into two distinct groups : the outer problem which predicts
the behavior of the plate away from the edges, and the inner problem (boundary layer)
which governs the solution near the edges of the plate. The solution to the outer problem,
together with the solution in the boundary layer, provides a uniformly valid first approxima-
tion to the solution of the system of equations (1)+7).

In the following, we first introduce the nondimensional independent variable x by

x =¢/L )

where L is a characteristic length of the deformation pattern. Next, we nondimensionalize
the dependent variables by

n, = N,2ah, ng = No/2ah, n= N/2ah, (10a)
sx = (12)3S20h2 (10b)
P = po/20 (10c)
u=u*/L og = ag/L Ay = Ag. (10d)
The governing equations (1)«(7) then become
agn,  +A(n,—ng) =0 (11a)
&(0gSc) x— ApA,n = 0 (11b)
Ao = tg/X (12a)
U=0og—Xx (12b)
g = Ay (12¢)

g = 1 (13)
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and
ne = Al—p+A}—TAHA? +£202)] (14a)
ng = Al—p+45 —T 1247 (14b)
n=A—p+it~TA2i; +e21%] (14c)
8, = eA, A4 (1 +T42) (14d)
where
e = ho/(12)*L {15

is a nondimensional parameter.

We now suppose that the parameter ¢ is small compared with unity so that the terms of
order ¢ and smaller can be neglected in (11)-(14). This process yields the following set of
equations which govern the deformation of the plate away from the edges.

Oty + A, —ng) = 0 (16a)

n=0 (16b)

ne = A—p+A2—Ti24?%) (17a)
Mg = M —p+ A2 — 1242 (17b)
n=M—p+i—TA22) (17¢)

5, = 0. (17d)

The remaining equations (12) and (13) are unchanged. Equation (16b), together with (17¢),
serves for the determination of the unknown hydrostatic pressure p in terms of the extension
ratios.

Since the order of the governing differential equations is reduced by two, the solution
to the outer problem is not uniformly valid throughout the entire plate. This necessitates
the formation of the boundary layers near the edges of the plate. The proper boundary
conditions to the outer problem should be obtained from the matching requirements, so
that they will be given after the analysis of the boundary layers is completed.

To study the boundary layer, let x = x, be the equation of the edge of the plate. The
stretched boundary layer coordinate is defined by

T = (X~ Xg)/e. (18)

In terms of the stretched coordinate 7, the governing equations {11)+{14) become

agh,  +ed(n,—ng) =0 (19a)
S, .+ EAS, —gd n = 0 (19b)
Ag = Oigf(xo+£T) {20a)

4 = 0g—{xg+£7) (20b)
Ag. = EAy (20c)
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n, = A[—p+A2—TA2A%+42)] (22a)
np = A[— p+A2 —Ti23%] (22b)

n = A[—p+A2+12—TA2A2] (22¢)
s, = A4 [1+TA2]. (22d)

The boundary layer equations, then, are obtained from (19) to (22) by letting ¢ — 0 while
keeping 7 fixed, which leads to

g, =0 %y = 06X, = const. (23a)
Ag = & = const. {23b)

u = (6—1)x, = const. (23¢)
n..=0 n, = ng = const. (24a)
Sep—Azt =0 (24b)

ny = Al—p+AZ—T8*1% + A%)] (25a)
ny = M —p+6°>—T/5% (25b)
n=M—-p+i?+12-T832) (25¢)
sy = AA (1 +T6%)/6 (25d)

AL = 1/6. (26)

Now, (25a) serves for the elimination of the unknown hydrostatic pressure p. The solution
to the boundary layer equations (23)}-{26) must satisfy the prescribed conditions at the edge
of the plate as t — 0, and must match the outer solution as T — oo. Since n, and u are con-
stant throughout the boundary layer, and since the boundary layer solution must match
the outer solution as T — oo, it follows that the natural boundary condition for the outer
problem is that

atx = x, eithern oru 27

be prescribed.

OUTER PROBLEM

The outer problem is governed by (123, {13), (16) and (17), with the boundary condition
(27). Although this problem has been already solved in {1, 3], we consider its solution
again, because we need it for the matching with the inner solution and also because we can
propose a more systematic method for its solution than that used in [1].

The solutions presented by Rivlin and Thomas [1], and later by Yang [3], are obtained
through a direct integration process which requires the boundary values of 4, and 4, (or
equivalently of n, and u) at the starting point. In this sense, they presented solutions to the
corresponding initial value problem rather than the boundary value problem. For the
solution of the outer problem, we use the multisegment method of direct numerical inte-
gration [5]. According to this method, the boundary value problem is formulated in terms
of two variables, called as the fundamental variables, which enter into the boundary
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conditions of the problem. The multisegment method requires the evaluation of the deriva-
tives of the fundamental variables with respect to the radial coordinate x at any point on
the middle plane, when the fundamental variables themselves are known. The calculation
of the derivatives is carried out after arranging the system of governing equations (12), (13),
(16) and (17) in a certain sequence, namely

%y = X+Uu {28a)
Jp = %/X (28b)
Agi""%ﬁ”ﬁ%{) -0 (28¢)
A= 120 (28d)
Hy = A2 —22) (L +TA2) (28¢)
U, = A,—1 (28f)
Ny = — AN, —Ng)/og (28g)

where (28c) should be solved for 4,. In the above equations the hydrostatic pressure is
eliminated through the use of (16b) and (17¢).

The outer boundary value problem is described by (28) with the boundary condition
7).

INNER PROBLEM

The behavior of the plate near the edges is governed by the boundary layer equations
{23)-(26). Since n_ and A, are constant in the boundary layer, we can eliminate hydrostatic
pressure p using the constitutive relation for n,, namely, {25a). This yields

n = ng+A1+T6%)(A2+42—A2). (29)

Next, we eliminate the radial extension ratio 4, from (24b) and (29) using the incompres-
sibility condition (26). We then substitute n and s, into the equilibrium equation (24b) and
get a second order nonlinear differential equation for the extension ratio 4
, Mo 1
A = A < - .
SN TS U VERP I
Since the independent variable is absent on the right hand side, (30) can be integrated to give

1
2o +2C

(30)

where C is an integration constant. In order to match the outer solutionas t — o0, 4 must
be a monotonically decreasing function of 7 in the boundary layer. Hence the derivative of
A must be negative and

PP PP T (31)
& (I+T8Y)4 842 :
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Substituting (31) into (25d) we get the shear moment s, as a function of 4

<2 %
- _Q‘Léi)«[zwzczz“ﬁﬂ—ui} . (32)

X

(1+15%)" " &2

The constant C is determined through matching with the outer solution. The matching
conditions are given by

inner At — o0) = outer A(x > xo) = 0 (33a)
inner s {t — o0) = outer s,{x — x,) = 0 {33b)

where ¢ is known from the outer solution. Combining (33a) and (33b) we find that
inner s{A ~ o) =0 (34)

which is the appropriate matching condition since we have an explicit relation between
5, and 4. Using (34), we get from (32) that

2n |
2C = —gPp—20 35
RNTE I (35a)
so that (32) reduces to
(1416 . 1\
Se= = (A—0) 22+201+5—2—(}5 (35b)
where we have used
1
ny = (;(5‘—,‘;2—”02) (1+T6% (36)

which is obtained from (17a) by eliminating p with the aid of (16b) and (17¢).
Let the value of 4 at the edge x, be denoted by ¢*. Using separation of variables and
(35a), (31) leads to

=7 L : (37a)
» =0y’ +20y +(1/6%0")]F
which can easily be integrated to give
T = 1(4, 6, 0%) (37b)

in terms of simple functions. This form, however, is not useful because the inversion of
(37b) into the form

A= Mz, 0,0%)
is rather difficult. Hence, we prefer to calculate the initial value of s, by
st = st =0)

(14T6%)
]

1 \#
(6*—0) (0'*2-}-20'0'* +57;—5) (38)
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and then integrate the boundary layer equations (24b) and (25b) numerically, since now the
problem is actually reduced to an initial value problem.

One interesting remark can be made by observing the form of (35b). If s, = 0is prescribed
at the edge of the plate, (35b) gives that

¥ =g

which means that the initial value of 4 is equal to its outer counterpart. Hence, it follows
that for the case

st=0)=0

there is no boundary layer of thickness 0(¢). This case then can be represented by the outer
solution alone, which is the case treated by Rivlin and Thomas [1].

If a circular annular sheet is bonded to a rigid inclusion at its inner edge and is subjected
to a uniform radial stretching, the boundary conditions at the inner edge are

atx = x, u = 0 (outer) (39a)
att =0 A = ¢* = 1 (inner). (39b)
Then (23c) yields
o0=1

and hence the initial condition of s, becomes
1\
s{t=0)=—( +F)(1—a)(1 +20+;5)

which then can be used to initiate the initial value integration.

NUMERICAL RESULTS

The solutions of two distinct problems are presented. First, the solution state of an
annular circular plate which is subjected to a uniform tension at the outer edge is given
(Fig. 1). This problem is solved by the multisegment method of direct numerical integration
[5). The linear solution is taken as the first trial solution, and acceptable convergence is
achieved after three iterations. A good indication of convergence is provided by the value of
n, at the outer edge which is supposed to converge to the prescribed value (Table 1). In this
problem, since s, = 0 prescribed at the edges, there are no boundary layers of order ¢
so that the outer solution is assumed to represent the solution state throughout the entire

2
v /Y R /e

|
e . i
¥ T 1

Xg10 2:0

F1G. 1. Section of the annular plate.



Finite stretching of an annular plate

TABLE 1. VALUES OF n, AT x = 3

Linear 0-35000
Nonlinear First iteration 027424
Second iteration 0-33978

Third iteration 0-34931

Fourth iteration 0-34996

Fifth iteration 0-34999

TABLE 2. RADIAL DISPLACEMENT AND RADIAL STRESS
RESULTANT FOR FIVE ITERATIONS
(MOONEY MATERIAL I = 0-1)

X u n,
100 0-3303 0-0000
1-20 0-3094 01018
1-40 0-2974 01713
1.60 0-2915 0-2204
1-80 0-2900 0-2561
2:00 02917 0-2828
220 02958 0-3031
2:40 03017 0-3190
2:60 0-3091 03316
2:80 03176 0-3417
300 0-3271 0-3500

TABLE 3. BONDED PLATE GUTER SOLUTION: RADIAL DISPLACEMENT AND
STRESS RESULTANTS ( MOONEY MATERIAL [ = 0:1)

x u n, Ny
100 0-0000 1-3160 04523
120 00892 1-1363 0-5677
1-40 01650 1-0425 0-6362
1-60 02330 09866 0-6805
1-80 0-2961 09502 0-7109
200 0-3557 09251 0-7327
220 04129 0-9070 0-7488
240 0-4683 08934 07610
2.60 0-5224 0-8831 0-7706
280 0-5754 0-8749 0-7782
3-.00 0-6275 0-8684 07843

TABLE 4. BONDED PLATE QUTER SOLUTION : EXTENSION RATIOS
(MOONEY MATERIAL T = -1}

x A o i
1.00 14954 1-0000 06687
120 14061 10743 0-6620
140 13565 111179 06594
160 1:3260 11457 0-6583
180 1.3057 11645 06577
200 1-2915 11779 0-6574
2.20 12811 11877 06572
240 12734 11951 06571
260 12674 12009 06570
2.80 12627 12055 06570

300 1-2589 1-2092 0-6569




1650 V. BIRICIKOGLU and ARTURS KALNINS

S

F1G. 2. Section of the bonded circular plate.

plate. The material is assumed to be of Mooney type with I = 0-1. The radial displacement
u and the radial stress resultant n, are given in Table 2. It is interesting to note that the
radial displacement is approximately constant throughout the plate.

Next, the solution state of an annular circular plate which is bonded to a rigid inclusion
at its inner edge and subjected to uniform radial tension at its outer edge is given (Fig. 2).
The solution state is assumed to consist of an inner solution at the inner edge, and an outer
solution. In Tables 3 and 4 the variation of the radial displacement, the radial and circum-
ferential stress resultants and the extension ratios of the outer problem are given. The varia-
tion of the boundary-layer quantities with respect to the stretched coordinate 7 is given in
Tables 5 and 6. The extension ratio A which represents the variation of the deformed thick-
ness is plotted in Fig. 3.

CONCLUDING REMARKS

A close look at the second problem reveals that away from the bonded edge the thickness
of the deformed plate is again almost constant. Near the bonded edge, where the inner
solution is valid, the circumferential stress resultant ny shows a sharp rise (Tables 3 and 5)
its value at the bonded edge (t = 0) being almost three times larger than the one predicted

0
[eR:3 o
o8

X
o7k
Outer 50).0-6678

06

. L 1

o 50 [ol:} Re] 5

T
F1G. 3. Variation of the extension ratio 2.
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TABLE 5. BONDED PLATE INNER SOLUTION | STRESS RESULTANTS AND COUPLES
(¢ = 004166, " = 0-1)

T x -5, n ng
0-00 1-0000 0-7793 1-8682 1-3662
0-25 1.0104 0-4208 09134 1-0010
0-50 1-0208 02202 0-4489 0-7627
075 10312 01124 02211 06189
1-00 1-0417 00565 0-1090 0-5385
1-25 1.0521 0-0281 0-0538 0-4959
1-50 1.0625 00139 0-0265 0-4741

= — 0-0000 0-0000 0-4523

by the outer solution. The thickness of the stretched plate, characterized by the extension
ratio J, shows an exponential decay to its asymptotic value found from the outer solution.

It can be concluded that the effect of the symmetric transverse normal strain is localized
near the edges of the plate, but can affect significantly the stress concentration around the
bonded edges.

TABLE 6. BONDED PLATE INNER SOLUTION:
EXTENSION RATIOS

T Ax A
0-00 1-0000 1-0000
025 1-1666 0-8573
0-50 1-2978 0-7706
075 1.3857 07217
1-00 1-4376 0-6956
125 1-4659 06822
1-50 1.4806 0-6754

0 1-4954 0-6687
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AbcrpakT—Hcecnenyercs 3aja4a KOHEYHOrO PACTANKEHHS KOMLLICBOK NIACTUHKY, CBA3AHHON C KECTKUM
BK/IIOUCHHEM Ha €¢ BHYTIpPeHHeM Kpaio. PaccmaTtpuBaeTcs Marepuan M30TPONHBIE M HECKHMaeMbill,
C KOHCTUTYTHBHOM 3aKoHOMMLMa MyH3d. YKasano, 4To Bkmodenue 3bdexra nonepeunoii HopMansHol
nedopMaiuu Bea€T K BBICTPOMY MIMEHEHHIO TONULMHBI, OTPaHHYECHHON y3x0H kpaesoit 3oxoM. Harwrcs
pgmenm, B ABHOM BHIIE U1 yPaBHEHHH MOTPAHUYHOIO CJION, NPESACTABARIOUINUX TTOBEACHHUE NIACTHHKHA
BOJIWIN Kpaes.



